/tmp/ipykernel_60846/908130843.py:21: UserWarning: There are not enough devices to run parallel chains: expected 4 but got 1. Chains will be drawn sequentially. If you are running MCMC in CPU, consider using `numpyro.set_host_device_count(4)` at the beginning of your program. You can double-check how many devices are available in your system using `jax.local_device_count()`.
posterior = numpyro.infer.MCMC(
0%| | 0/1000 [00:00<?, ?it/s]warmup: 0%| | 1/1000 [00:01<22:38, 1.36s/it, 1 steps of size 2.34e+00. acc. prob=0.00]warmup: 12%|█▏ | 121/1000 [00:01<00:07, 114.70it/s, 31 steps of size 1.92e-01. acc. prob=0.77]warmup: 23%|██▎ | 229/1000 [00:01<00:03, 230.07it/s, 31 steps of size 3.50e-02. acc. prob=0.78]warmup: 34%|███▍ | 345/1000 [00:01<00:01, 365.50it/s, 31 steps of size 2.54e-01. acc. prob=0.78]warmup: 49%|████▊ | 486/1000 [00:01<00:00, 544.55it/s, 31 steps of size 8.26e-02. acc. prob=0.78]sample: 63%|██████▎ | 631/1000 [00:01<00:00, 723.12it/s, 15 steps of size 2.17e-01. acc. prob=0.77]sample: 78%|███████▊ | 783/1000 [00:01<00:00, 897.42it/s, 15 steps of size 2.17e-01. acc. prob=0.76]sample: 94%|█████████▍| 944/1000 [00:02<00:00, 1067.34it/s, 15 steps of size 2.17e-01. acc. prob=0.74]sample: 100%|██████████| 1000/1000 [00:02<00:00, 475.86it/s, 15 steps of size 2.17e-01. acc. prob=0.74]
0%| | 0/1000 [00:00<?, ?it/s]warmup: 14%|█▍ | 138/1000 [00:00<00:00, 1376.21it/s, 31 steps of size 1.25e-01. acc. prob=0.78]warmup: 28%|██▊ | 276/1000 [00:00<00:00, 1326.50it/s, 7 steps of size 1.89e-01. acc. prob=0.78] warmup: 44%|████▍ | 439/1000 [00:00<00:00, 1459.82it/s, 7 steps of size 1.84e-01. acc. prob=0.79]sample: 61%|██████ | 606/1000 [00:00<00:00, 1539.66it/s, 15 steps of size 3.01e-01. acc. prob=0.89]sample: 78%|███████▊ | 776/1000 [00:00<00:00, 1596.10it/s, 15 steps of size 3.01e-01. acc. prob=0.83]sample: 94%|█████████▍| 938/1000 [00:00<00:00, 1601.95it/s, 15 steps of size 3.01e-01. acc. prob=0.84]sample: 100%|██████████| 1000/1000 [00:00<00:00, 1551.24it/s, 15 steps of size 3.01e-01. acc. prob=0.84]
0%| | 0/1000 [00:00<?, ?it/s]warmup: 11%|█ | 109/1000 [00:00<00:00, 1078.77it/s, 31 steps of size 4.75e-01. acc. prob=0.78]warmup: 26%|██▌ | 257/1000 [00:00<00:00, 1312.59it/s, 15 steps of size 6.13e-02. acc. prob=0.78]warmup: 41%|████ | 407/1000 [00:00<00:00, 1395.57it/s, 7 steps of size 5.14e-01. acc. prob=0.79] sample: 56%|█████▋ | 563/1000 [00:00<00:00, 1458.26it/s, 15 steps of size 2.28e-01. acc. prob=0.78]sample: 73%|███████▎ | 727/1000 [00:00<00:00, 1521.32it/s, 15 steps of size 2.28e-01. acc. prob=0.78]sample: 89%|████████▉ | 891/1000 [00:00<00:00, 1559.12it/s, 15 steps of size 2.28e-01. acc. prob=0.76]sample: 100%|██████████| 1000/1000 [00:00<00:00, 1489.34it/s, 15 steps of size 2.28e-01. acc. prob=0.77]
0%| | 0/1000 [00:00<?, ?it/s]warmup: 11%|█ | 107/1000 [00:00<00:00, 1066.82it/s, 15 steps of size 4.23e-01. acc. prob=0.77]warmup: 21%|██▏ | 214/1000 [00:00<00:00, 1067.49it/s, 15 steps of size 6.69e-02. acc. prob=0.78]warmup: 32%|███▎ | 325/1000 [00:00<00:00, 1077.00it/s, 63 steps of size 1.11e-01. acc. prob=0.78]warmup: 46%|████▌ | 457/1000 [00:00<00:00, 1171.20it/s, 15 steps of size 4.02e-01. acc. prob=0.79]sample: 57%|█████▊ | 575/1000 [00:00<00:00, 1060.12it/s, 31 steps of size 1.64e-01. acc. prob=0.92]sample: 68%|██████▊ | 683/1000 [00:00<00:00, 1043.34it/s, 31 steps of size 1.64e-01. acc. prob=0.93]sample: 79%|███████▉ | 791/1000 [00:00<00:00, 1054.47it/s, 15 steps of size 1.64e-01. acc. prob=0.92]sample: 90%|█████████ | 903/1000 [00:00<00:00, 1073.16it/s, 31 steps of size 1.64e-01. acc. prob=0.91]sample: 100%|██████████| 1000/1000 [00:00<00:00, 1078.38it/s, 31 steps of size 1.64e-01. acc. prob=0.91]
/tmp/ipykernel_60846/908130843.py:21: UserWarning: There are not enough devices to run parallel chains: expected 4 but got 1. Chains will be drawn sequentially. If you are running MCMC in CPU, consider using `numpyro.set_host_device_count(4)` at the beginning of your program. You can double-check how many devices are available in your system using `jax.local_device_count()`.
posterior = numpyro.infer.MCMC(
0%| | 0/1000 [00:00<?, ?it/s]warmup: 0%| | 1/1000 [00:01<24:04, 1.45s/it, 1 steps of size 2.34e+00. acc. prob=0.00]warmup: 10%|█ | 105/1000 [00:01<00:09, 94.11it/s, 15 steps of size 3.41e-01. acc. prob=0.77]warmup: 18%|█▊ | 185/1000 [00:01<00:04, 174.29it/s, 31 steps of size 1.46e-01. acc. prob=0.78]warmup: 28%|██▊ | 275/1000 [00:01<00:02, 275.43it/s, 63 steps of size 6.17e-02. acc. prob=0.78]warmup: 36%|███▌ | 357/1000 [00:01<00:01, 365.77it/s, 31 steps of size 2.04e-01. acc. prob=0.78]warmup: 46%|████▋ | 465/1000 [00:01<00:01, 502.31it/s, 15 steps of size 4.07e-02. acc. prob=0.78]sample: 57%|█████▋ | 570/1000 [00:02<00:00, 619.46it/s, 15 steps of size 1.29e-01. acc. prob=0.91]sample: 69%|██████▉ | 691/1000 [00:02<00:00, 757.85it/s, 31 steps of size 1.29e-01. acc. prob=0.90]sample: 81%|████████ | 810/1000 [00:02<00:00, 866.06it/s, 15 steps of size 1.29e-01. acc. prob=0.89]sample: 93%|█████████▎| 934/1000 [00:02<00:00, 963.63it/s, 15 steps of size 1.29e-01. acc. prob=0.89]sample: 100%|██████████| 1000/1000 [00:02<00:00, 415.10it/s, 15 steps of size 1.29e-01. acc. prob=0.89]
0%| | 0/1000 [00:00<?, ?it/s]warmup: 8%|▊ | 81/1000 [00:00<00:01, 805.87it/s, 15 steps of size 1.37e-02. acc. prob=0.76]warmup: 17%|█▋ | 168/1000 [00:00<00:00, 838.95it/s, 31 steps of size 7.85e-02. acc. prob=0.77]warmup: 25%|██▌ | 252/1000 [00:00<00:00, 818.74it/s, 2 steps of size 2.54e-01. acc. prob=0.78] warmup: 35%|███▌ | 351/1000 [00:00<00:00, 882.08it/s, 31 steps of size 1.21e-01. acc. prob=0.78]warmup: 46%|████▌ | 460/1000 [00:00<00:00, 954.33it/s, 15 steps of size 3.02e-01. acc. prob=0.79]sample: 56%|█████▌ | 561/1000 [00:00<00:00, 969.55it/s, 63 steps of size 1.16e-01. acc. prob=0.94]sample: 66%|██████▋ | 663/1000 [00:00<00:00, 985.18it/s, 47 steps of size 1.16e-01. acc. prob=0.95]sample: 76%|███████▌ | 762/1000 [00:00<00:00, 986.43it/s, 31 steps of size 1.16e-01. acc. prob=0.95]sample: 87%|████████▋ | 868/1000 [00:00<00:00, 1008.45it/s, 15 steps of size 1.16e-01. acc. prob=0.94]sample: 98%|█████████▊| 979/1000 [00:01<00:00, 1036.30it/s, 63 steps of size 1.16e-01. acc. prob=0.94]sample: 100%|██████████| 1000/1000 [00:01<00:00, 968.19it/s, 15 steps of size 1.16e-01. acc. prob=0.94]
0%| | 0/1000 [00:00<?, ?it/s]warmup: 9%|▉ | 88/1000 [00:00<00:01, 876.77it/s, 31 steps of size 2.28e-02. acc. prob=0.76]warmup: 18%|█▊ | 176/1000 [00:00<00:00, 873.79it/s, 15 steps of size 1.80e-01. acc. prob=0.78]warmup: 26%|██▋ | 264/1000 [00:00<00:00, 857.51it/s, 63 steps of size 4.83e-02. acc. prob=0.78]warmup: 36%|███▌ | 357/1000 [00:00<00:00, 883.21it/s, 31 steps of size 1.13e-01. acc. prob=0.78]warmup: 45%|████▍ | 446/1000 [00:00<00:00, 861.09it/s, 31 steps of size 1.80e-01. acc. prob=0.79]sample: 54%|█████▎ | 535/1000 [00:00<00:00, 869.41it/s, 15 steps of size 1.32e-01. acc. prob=0.95]sample: 63%|██████▎ | 628/1000 [00:00<00:00, 888.53it/s, 15 steps of size 1.32e-01. acc. prob=0.94]sample: 74%|███████▎ | 737/1000 [00:00<00:00, 947.07it/s, 63 steps of size 1.32e-01. acc. prob=0.92]sample: 85%|████████▌ | 853/1000 [00:00<00:00, 1011.16it/s, 63 steps of size 1.32e-01. acc. prob=0.93]sample: 96%|█████████▌| 962/1000 [00:01<00:00, 1033.78it/s, 15 steps of size 1.32e-01. acc. prob=0.93]sample: 100%|██████████| 1000/1000 [00:01<00:00, 952.63it/s, 31 steps of size 1.32e-01. acc. prob=0.93]
0%| | 0/1000 [00:00<?, ?it/s]warmup: 9%|▊ | 86/1000 [00:00<00:01, 852.33it/s, 127 steps of size 3.91e-02. acc. prob=0.77]warmup: 17%|█▋ | 172/1000 [00:00<00:00, 843.41it/s, 63 steps of size 1.43e-01. acc. prob=0.78]warmup: 28%|██▊ | 278/1000 [00:00<00:00, 940.86it/s, 127 steps of size 8.49e-02. acc. prob=0.78]warmup: 42%|████▎ | 425/1000 [00:00<00:00, 1145.04it/s, 23 steps of size 1.69e-01. acc. prob=0.79]sample: 54%|█████▍ | 540/1000 [00:00<00:00, 1096.10it/s, 15 steps of size 1.14e-01. acc. prob=0.96]sample: 65%|██████▌ | 651/1000 [00:00<00:00, 983.26it/s, 15 steps of size 1.14e-01. acc. prob=0.96] sample: 75%|███████▌ | 752/1000 [00:00<00:00, 957.32it/s, 15 steps of size 1.14e-01. acc. prob=0.96]sample: 85%|████████▍ | 849/1000 [00:00<00:00, 909.34it/s, 31 steps of size 1.14e-01. acc. prob=0.96]sample: 94%|█████████▍| 941/1000 [00:00<00:00, 888.96it/s, 31 steps of size 1.14e-01. acc. prob=0.96]sample: 100%|██████████| 1000/1000 [00:01<00:00, 943.11it/s, 15 steps of size 1.14e-01. acc. prob=0.96]
/tmp/ipykernel_60846/908130843.py:21: UserWarning: There are not enough devices to run parallel chains: expected 4 but got 1. Chains will be drawn sequentially. If you are running MCMC in CPU, consider using `numpyro.set_host_device_count(4)` at the beginning of your program. You can double-check how many devices are available in your system using `jax.local_device_count()`.
posterior = numpyro.infer.MCMC(
0%| | 0/1000 [00:00<?, ?it/s]warmup: 0%| | 1/1000 [00:01<22:51, 1.37s/it, 1 steps of size 2.34e+00. acc. prob=0.00]warmup: 7%|▋ | 66/1000 [00:01<00:15, 61.80it/s, 79 steps of size 2.44e-02. acc. prob=0.76]warmup: 13%|█▎ | 132/1000 [00:01<00:06, 132.57it/s, 79 steps of size 1.10e-01. acc. prob=0.77]warmup: 19%|█▊ | 187/1000 [00:01<00:04, 192.42it/s, 191 steps of size 6.23e-02. acc. prob=0.77]warmup: 26%|██▌ | 262/1000 [00:01<00:02, 286.73it/s, 255 steps of size 1.26e-02. acc. prob=0.78]warmup: 32%|███▏ | 322/1000 [00:01<00:01, 346.03it/s, 31 steps of size 9.07e-02. acc. prob=0.78] warmup: 39%|███▉ | 393/1000 [00:01<00:01, 424.76it/s, 15 steps of size 1.07e-01. acc. prob=0.78]warmup: 46%|████▌ | 456/1000 [00:02<00:01, 466.23it/s, 95 steps of size 3.43e-02. acc. prob=0.78]sample: 52%|█████▏ | 518/1000 [00:02<00:00, 499.05it/s, 15 steps of size 6.86e-02. acc. prob=0.93]sample: 60%|█████▉ | 595/1000 [00:02<00:00, 569.38it/s, 15 steps of size 6.86e-02. acc. prob=0.93]sample: 67%|██████▋ | 671/1000 [00:02<00:00, 620.11it/s, 79 steps of size 6.86e-02. acc. prob=0.92]sample: 75%|███████▌ | 753/1000 [00:02<00:00, 674.96it/s, 15 steps of size 6.86e-02. acc. prob=0.92]sample: 83%|████████▎ | 834/1000 [00:02<00:00, 709.85it/s, 63 steps of size 6.86e-02. acc. prob=0.92]sample: 91%|█████████ | 910/1000 [00:02<00:00, 723.79it/s, 95 steps of size 6.86e-02. acc. prob=0.92]sample: 99%|█████████▊| 986/1000 [00:02<00:00, 713.96it/s, 63 steps of size 6.86e-02. acc. prob=0.92]sample: 100%|██████████| 1000/1000 [00:02<00:00, 354.69it/s, 15 steps of size 6.86e-02. acc. prob=0.92]
0%| | 0/1000 [00:00<?, ?it/s]warmup: 7%|▋ | 70/1000 [00:00<00:01, 697.31it/s, 15 steps of size 2.99e-02. acc. prob=0.76]warmup: 14%|█▍ | 140/1000 [00:00<00:01, 655.18it/s, 95 steps of size 6.36e-02. acc. prob=0.77]warmup: 21%|██ | 206/1000 [00:00<00:01, 633.97it/s, 31 steps of size 9.03e-02. acc. prob=0.78]warmup: 28%|██▊ | 275/1000 [00:00<00:01, 652.89it/s, 31 steps of size 7.94e-02. acc. prob=0.78]warmup: 34%|███▍ | 343/1000 [00:00<00:00, 659.87it/s, 63 steps of size 4.77e-02. acc. prob=0.78]warmup: 41%|████ | 410/1000 [00:00<00:00, 652.81it/s, 31 steps of size 4.90e-02. acc. prob=0.78]warmup: 48%|████▊ | 480/1000 [00:00<00:00, 661.88it/s, 127 steps of size 1.30e-01. acc. prob=0.78]sample: 55%|█████▍ | 547/1000 [00:00<00:00, 648.31it/s, 23 steps of size 6.96e-02. acc. prob=0.95] sample: 61%|██████ | 612/1000 [00:00<00:00, 630.96it/s, 31 steps of size 6.96e-02. acc. prob=0.94]sample: 68%|██████▊ | 676/1000 [00:01<00:00, 621.71it/s, 63 steps of size 6.96e-02. acc. prob=0.94]sample: 74%|███████▍ | 745/1000 [00:01<00:00, 638.28it/s, 63 steps of size 6.96e-02. acc. prob=0.94]sample: 81%|████████ | 809/1000 [00:01<00:00, 626.69it/s, 111 steps of size 6.96e-02. acc. prob=0.93]sample: 87%|████████▋ | 872/1000 [00:01<00:00, 600.58it/s, 15 steps of size 6.96e-02. acc. prob=0.93] sample: 94%|█████████▍| 938/1000 [00:01<00:00, 615.82it/s, 47 steps of size 6.96e-02. acc. prob=0.93]sample: 100%|██████████| 1000/1000 [00:01<00:00, 635.73it/s, 15 steps of size 6.96e-02. acc. prob=0.93]
0%| | 0/1000 [00:00<?, ?it/s]warmup: 8%|▊ | 78/1000 [00:00<00:01, 778.00it/s, 15 steps of size 1.88e-02. acc. prob=0.76]warmup: 16%|█▌ | 156/1000 [00:00<00:01, 671.59it/s, 159 steps of size 4.04e-02. acc. prob=0.77]warmup: 22%|██▎ | 225/1000 [00:00<00:01, 666.63it/s, 15 steps of size 1.91e-01. acc. prob=0.78] warmup: 29%|██▉ | 293/1000 [00:00<00:01, 633.64it/s, 15 steps of size 1.07e-01. acc. prob=0.78]warmup: 36%|███▋ | 364/1000 [00:00<00:00, 658.81it/s, 15 steps of size 5.66e-02. acc. prob=0.78]warmup: 45%|████▌ | 454/1000 [00:00<00:00, 733.90it/s, 191 steps of size 2.03e-02. acc. prob=0.78]sample: 53%|█████▎ | 529/1000 [00:00<00:00, 671.25it/s, 47 steps of size 6.27e-02. acc. prob=0.93] sample: 61%|██████ | 608/1000 [00:00<00:00, 703.53it/s, 31 steps of size 6.27e-02. acc. prob=0.91]sample: 68%|██████▊ | 685/1000 [00:00<00:00, 722.10it/s, 15 steps of size 6.27e-02. acc. prob=0.91]sample: 77%|███████▋ | 769/1000 [00:01<00:00, 754.85it/s, 47 steps of size 6.27e-02. acc. prob=0.91]sample: 86%|████████▌ | 856/1000 [00:01<00:00, 788.83it/s, 15 steps of size 6.27e-02. acc. prob=0.92]sample: 94%|█████████▎| 936/1000 [00:01<00:00, 784.19it/s, 15 steps of size 6.27e-02. acc. prob=0.92]sample: 100%|██████████| 1000/1000 [00:01<00:00, 725.87it/s, 47 steps of size 6.27e-02. acc. prob=0.91]
0%| | 0/1000 [00:00<?, ?it/s]warmup: 6%|▋ | 64/1000 [00:00<00:01, 638.15it/s, 7 steps of size 7.81e-03. acc. prob=0.75]warmup: 13%|█▎ | 131/1000 [00:00<00:01, 654.81it/s, 63 steps of size 8.02e-02. acc. prob=0.77]warmup: 20%|██ | 201/1000 [00:00<00:01, 652.50it/s, 383 steps of size 5.09e-02. acc. prob=0.78]warmup: 30%|██▉ | 295/1000 [00:00<00:00, 755.78it/s, 255 steps of size 3.45e-02. acc. prob=0.78]warmup: 37%|███▋ | 371/1000 [00:00<00:00, 754.53it/s, 63 steps of size 5.71e-02. acc. prob=0.78] warmup: 46%|████▌ | 455/1000 [00:00<00:00, 771.29it/s, 255 steps of size 2.88e-02. acc. prob=0.78]sample: 53%|█████▎ | 533/1000 [00:00<00:00, 744.85it/s, 47 steps of size 5.87e-02. acc. prob=0.92] sample: 62%|██████▏ | 619/1000 [00:00<00:00, 777.03it/s, 111 steps of size 5.87e-02. acc. prob=0.92]sample: 70%|██████▉ | 697/1000 [00:00<00:00, 757.16it/s, 15 steps of size 5.87e-02. acc. prob=0.93] sample: 78%|███████▊ | 785/1000 [00:01<00:00, 791.90it/s, 63 steps of size 5.87e-02. acc. prob=0.91]sample: 86%|████████▋ | 865/1000 [00:01<00:00, 788.40it/s, 31 steps of size 5.87e-02. acc. prob=0.92]sample: 95%|█████████▌| 953/1000 [00:01<00:00, 811.67it/s, 63 steps of size 5.87e-02. acc. prob=0.92]sample: 100%|██████████| 1000/1000 [00:01<00:00, 766.68it/s, 95 steps of size 5.87e-02. acc. prob=0.92]
/tmp/ipykernel_60846/908130843.py:21: UserWarning: There are not enough devices to run parallel chains: expected 4 but got 1. Chains will be drawn sequentially. If you are running MCMC in CPU, consider using `numpyro.set_host_device_count(4)` at the beginning of your program. You can double-check how many devices are available in your system using `jax.local_device_count()`.
posterior = numpyro.infer.MCMC(
0%| | 0/1000 [00:00<?, ?it/s]warmup: 0%| | 1/1000 [00:01<24:31, 1.47s/it, 1 steps of size 2.34e+00. acc. prob=0.00]warmup: 5%|▍ | 49/1000 [00:01<00:22, 43.00it/s, 63 steps of size 1.83e-02. acc. prob=0.75]warmup: 11%|█ | 108/1000 [00:01<00:08, 104.09it/s, 111 steps of size 1.33e-01. acc. prob=0.77]warmup: 16%|█▌ | 158/1000 [00:01<00:05, 158.20it/s, 63 steps of size 2.03e-02. acc. prob=0.77] warmup: 21%|██▏ | 214/1000 [00:01<00:03, 224.04it/s, 7 steps of size 5.26e-02. acc. prob=0.78] warmup: 28%|██▊ | 276/1000 [00:01<00:02, 296.36it/s, 255 steps of size 6.84e-02. acc. prob=0.78]warmup: 34%|███▍ | 338/1000 [00:02<00:01, 364.10it/s, 135 steps of size 8.97e-02. acc. prob=0.78]warmup: 40%|████ | 400/1000 [00:02<00:01, 421.03it/s, 95 steps of size 6.67e-02. acc. prob=0.78] warmup: 46%|████▋ | 463/1000 [00:02<00:01, 466.42it/s, 511 steps of size 3.62e-02. acc. prob=0.78]sample: 52%|█████▏ | 521/1000 [00:02<00:00, 493.23it/s, 15 steps of size 4.22e-02. acc. prob=0.90] sample: 58%|█████▊ | 584/1000 [00:02<00:00, 527.39it/s, 63 steps of size 4.22e-02. acc. prob=0.93]sample: 64%|██████▍ | 643/1000 [00:02<00:00, 506.63it/s, 63 steps of size 4.22e-02. acc. prob=0.94]sample: 70%|███████ | 705/1000 [00:02<00:00, 536.83it/s, 15 steps of size 4.22e-02. acc. prob=0.95]sample: 76%|███████▋ | 765/1000 [00:02<00:00, 553.06it/s, 175 steps of size 4.22e-02. acc. prob=0.94]sample: 83%|████████▎ | 832/1000 [00:02<00:00, 582.79it/s, 87 steps of size 4.22e-02. acc. prob=0.95] sample: 89%|████████▉ | 893/1000 [00:03<00:00, 564.51it/s, 15 steps of size 4.22e-02. acc. prob=0.95]sample: 95%|█████████▌| 951/1000 [00:03<00:00, 566.00it/s, 79 steps of size 4.22e-02. acc. prob=0.95]sample: 100%|██████████| 1000/1000 [00:03<00:00, 310.19it/s, 31 steps of size 4.22e-02. acc. prob=0.95]
0%| | 0/1000 [00:00<?, ?it/s]warmup: 10%|▉ | 99/1000 [00:00<00:00, 980.29it/s, 63 steps of size 2.15e-02. acc. prob=0.77]warmup: 20%|█▉ | 198/1000 [00:00<00:01, 681.27it/s, 79 steps of size 8.71e-02. acc. prob=0.78]warmup: 27%|██▋ | 272/1000 [00:00<00:01, 570.17it/s, 7 steps of size 2.75e-02. acc. prob=0.78] warmup: 34%|███▍ | 339/1000 [00:00<00:01, 599.04it/s, 39 steps of size 6.02e-02. acc. prob=0.78]warmup: 42%|████▏ | 424/1000 [00:00<00:00, 672.02it/s, 95 steps of size 1.16e-01. acc. prob=0.78]warmup: 50%|████▉ | 495/1000 [00:00<00:00, 606.26it/s, 15 steps of size 2.15e-02. acc. prob=0.78]sample: 56%|█████▌ | 559/1000 [00:00<00:00, 603.29it/s, 79 steps of size 3.82e-02. acc. prob=0.93]sample: 62%|██████▏ | 622/1000 [00:00<00:00, 608.28it/s, 15 steps of size 3.82e-02. acc. prob=0.94]sample: 68%|██████▊ | 685/1000 [00:01<00:00, 608.70it/s, 31 steps of size 3.82e-02. acc. prob=0.94]sample: 75%|███████▍ | 747/1000 [00:01<00:00, 605.91it/s, 15 steps of size 3.82e-02. acc. prob=0.93]sample: 81%|████████ | 809/1000 [00:01<00:00, 608.14it/s, 15 steps of size 3.82e-02. acc. prob=0.94]sample: 87%|████████▋ | 872/1000 [00:01<00:00, 614.24it/s, 95 steps of size 3.82e-02. acc. prob=0.94]sample: 93%|█████████▎| 934/1000 [00:01<00:00, 606.82it/s, 63 steps of size 3.82e-02. acc. prob=0.94]sample: 100%|█████████▉| 996/1000 [00:01<00:00, 609.79it/s, 31 steps of size 3.82e-02. acc. prob=0.94]sample: 100%|██████████| 1000/1000 [00:01<00:00, 619.40it/s, 31 steps of size 3.82e-02. acc. prob=0.94]
0%| | 0/1000 [00:00<?, ?it/s]warmup: 9%|▉ | 92/1000 [00:00<00:00, 914.80it/s, 31 steps of size 1.27e-02. acc. prob=0.76]warmup: 18%|█▊ | 184/1000 [00:00<00:01, 538.61it/s, 63 steps of size 1.11e-01. acc. prob=0.78]warmup: 25%|██▍ | 247/1000 [00:00<00:01, 402.53it/s, 63 steps of size 4.24e-02. acc. prob=0.78]warmup: 30%|███ | 305/1000 [00:00<00:01, 446.32it/s, 15 steps of size 1.24e-01. acc. prob=0.78]warmup: 37%|███▋ | 368/1000 [00:00<00:01, 492.28it/s, 103 steps of size 9.20e-02. acc. prob=0.78]warmup: 43%|████▎ | 433/1000 [00:00<00:01, 533.02it/s, 47 steps of size 7.91e-02. acc. prob=0.79] warmup: 50%|████▉ | 499/1000 [00:00<00:00, 566.63it/s, 191 steps of size 2.37e-02. acc. prob=0.78]sample: 56%|█████▌ | 562/1000 [00:01<00:00, 578.15it/s, 167 steps of size 4.39e-02. acc. prob=0.93]sample: 62%|██████▏ | 624/1000 [00:01<00:00, 587.64it/s, 63 steps of size 4.39e-02. acc. prob=0.92] sample: 70%|██████▉ | 698/1000 [00:01<00:00, 631.73it/s, 31 steps of size 4.39e-02. acc. prob=0.91]sample: 76%|███████▋ | 763/1000 [00:01<00:00, 598.29it/s, 95 steps of size 4.39e-02. acc. prob=0.92]sample: 83%|████████▎ | 831/1000 [00:01<00:00, 616.18it/s, 127 steps of size 4.39e-02. acc. prob=0.92]sample: 91%|█████████ | 911/1000 [00:01<00:00, 667.86it/s, 15 steps of size 4.39e-02. acc. prob=0.92] sample: 98%|█████████▊| 979/1000 [00:01<00:00, 643.35it/s, 95 steps of size 4.39e-02. acc. prob=0.92]sample: 100%|██████████| 1000/1000 [00:01<00:00, 579.95it/s, 15 steps of size 4.39e-02. acc. prob=0.92]
0%| | 0/1000 [00:00<?, ?it/s]warmup: 6%|▌ | 58/1000 [00:00<00:01, 577.58it/s, 15 steps of size 2.84e-02. acc. prob=0.75]warmup: 13%|█▎ | 133/1000 [00:00<00:01, 678.18it/s, 31 steps of size 1.48e-01. acc. prob=0.77]warmup: 20%|██ | 201/1000 [00:00<00:01, 524.95it/s, 31 steps of size 1.07e-01. acc. prob=0.78]warmup: 26%|██▋ | 265/1000 [00:00<00:01, 560.97it/s, 191 steps of size 3.58e-02. acc. prob=0.78]warmup: 34%|███▎ | 335/1000 [00:00<00:01, 603.47it/s, 159 steps of size 8.17e-02. acc. prob=0.78]warmup: 40%|███▉ | 398/1000 [00:00<00:00, 607.00it/s, 135 steps of size 1.05e-01. acc. prob=0.78]warmup: 46%|████▌ | 461/1000 [00:00<00:00, 586.03it/s, 127 steps of size 1.43e-02. acc. prob=0.78]sample: 52%|█████▏ | 523/1000 [00:00<00:00, 591.42it/s, 103 steps of size 3.85e-02. acc. prob=0.96]sample: 60%|█████▉ | 595/1000 [00:00<00:00, 627.54it/s, 31 steps of size 3.85e-02. acc. prob=0.95] sample: 66%|██████▌ | 659/1000 [00:01<00:00, 601.07it/s, 15 steps of size 3.85e-02. acc. prob=0.95]sample: 72%|███████▏ | 720/1000 [00:01<00:00, 586.66it/s, 47 steps of size 3.85e-02. acc. prob=0.94]sample: 78%|███████▊ | 780/1000 [00:01<00:00, 578.14it/s, 47 steps of size 3.85e-02. acc. prob=0.94]sample: 84%|████████▍ | 843/1000 [00:01<00:00, 591.36it/s, 95 steps of size 3.85e-02. acc. prob=0.94]sample: 90%|█████████ | 903/1000 [00:01<00:00, 581.78it/s, 31 steps of size 3.85e-02. acc. prob=0.94]sample: 97%|█████████▋| 971/1000 [00:01<00:00, 608.61it/s, 31 steps of size 3.85e-02. acc. prob=0.94]sample: 100%|██████████| 1000/1000 [00:01<00:00, 595.93it/s, 31 steps of size 3.85e-02. acc. prob=0.94]
/tmp/ipykernel_60846/908130843.py:21: UserWarning: There are not enough devices to run parallel chains: expected 4 but got 1. Chains will be drawn sequentially. If you are running MCMC in CPU, consider using `numpyro.set_host_device_count(4)` at the beginning of your program. You can double-check how many devices are available in your system using `jax.local_device_count()`.
posterior = numpyro.infer.MCMC(
0%| | 0/1000 [00:00<?, ?it/s]warmup: 0%| | 1/1000 [00:01<22:11, 1.33s/it, 1 steps of size 2.34e+00. acc. prob=0.00]warmup: 6%|▋ | 64/1000 [00:01<00:15, 61.23it/s, 319 steps of size 9.04e-03. acc. prob=0.75]warmup: 11%|█ | 111/1000 [00:01<00:08, 110.52it/s, 63 steps of size 3.10e-02. acc. prob=0.76]warmup: 16%|█▋ | 164/1000 [00:01<00:04, 169.33it/s, 447 steps of size 1.95e-02. acc. prob=0.77]warmup: 22%|██▏ | 217/1000 [00:01<00:03, 230.57it/s, 47 steps of size 4.15e-02. acc. prob=0.78] warmup: 28%|██▊ | 276/1000 [00:01<00:02, 299.04it/s, 383 steps of size 2.14e-02. acc. prob=0.78]warmup: 33%|███▎ | 329/1000 [00:01<00:01, 346.68it/s, 447 steps of size 2.53e-02. acc. prob=0.78]warmup: 39%|███▉ | 391/1000 [00:02<00:01, 408.89it/s, 111 steps of size 6.06e-02. acc. prob=0.78]warmup: 46%|████▌ | 455/1000 [00:02<00:01, 465.08it/s, 159 steps of size 2.42e-02. acc. prob=0.78]sample: 51%|█████ | 512/1000 [00:02<00:01, 430.42it/s, 31 steps of size 3.50e-02. acc. prob=0.95] sample: 56%|█████▋ | 563/1000 [00:02<00:01, 413.99it/s, 319 steps of size 3.50e-02. acc. prob=0.95]sample: 61%|██████ | 610/1000 [00:02<00:00, 423.45it/s, 127 steps of size 3.50e-02. acc. prob=0.95]sample: 66%|██████▌ | 662/1000 [00:02<00:00, 442.35it/s, 191 steps of size 3.50e-02. acc. prob=0.94]sample: 71%|███████ | 711/1000 [00:02<00:00, 453.16it/s, 63 steps of size 3.50e-02. acc. prob=0.94] sample: 76%|███████▋ | 763/1000 [00:02<00:00, 465.17it/s, 191 steps of size 3.50e-02. acc. prob=0.93]sample: 81%|████████ | 812/1000 [00:02<00:00, 465.18it/s, 15 steps of size 3.50e-02. acc. prob=0.93] sample: 87%|████████▋ | 870/1000 [00:03<00:00, 494.00it/s, 159 steps of size 3.50e-02. acc. prob=0.93]sample: 92%|█████████▏| 921/1000 [00:03<00:00, 477.23it/s, 15 steps of size 3.50e-02. acc. prob=0.93] sample: 97%|█████████▋| 970/1000 [00:03<00:00, 454.22it/s, 15 steps of size 3.50e-02. acc. prob=0.93]sample: 100%|██████████| 1000/1000 [00:03<00:00, 297.69it/s, 15 steps of size 3.50e-02. acc. prob=0.93]
0%| | 0/1000 [00:00<?, ?it/s]warmup: 6%|▌ | 61/1000 [00:00<00:01, 605.09it/s, 63 steps of size 6.04e-03. acc. prob=0.74]warmup: 12%|█▏ | 122/1000 [00:00<00:01, 584.52it/s, 54 steps of size 1.01e-02. acc. prob=0.76]warmup: 18%|█▊ | 181/1000 [00:00<00:01, 576.41it/s, 63 steps of size 5.78e-02. acc. prob=0.77]warmup: 24%|██▍ | 239/1000 [00:00<00:01, 535.90it/s, 31 steps of size 1.15e-01. acc. prob=0.78]warmup: 29%|██▉ | 293/1000 [00:00<00:01, 442.11it/s, 15 steps of size 1.02e-01. acc. prob=0.78]warmup: 34%|███▍ | 340/1000 [00:00<00:01, 449.55it/s, 127 steps of size 7.71e-02. acc. prob=0.78]warmup: 40%|████ | 401/1000 [00:00<00:01, 487.35it/s, 255 steps of size 4.94e-02. acc. prob=0.78]warmup: 45%|████▌ | 454/1000 [00:00<00:01, 474.94it/s, 767 steps of size 8.95e-03. acc. prob=0.78]sample: 50%|█████ | 503/1000 [00:01<00:01, 439.51it/s, 175 steps of size 2.65e-02. acc. prob=0.96]sample: 55%|█████▍ | 548/1000 [00:01<00:01, 432.44it/s, 175 steps of size 2.65e-02. acc. prob=0.95]sample: 59%|█████▉ | 592/1000 [00:01<00:01, 403.54it/s, 31 steps of size 2.65e-02. acc. prob=0.96] sample: 63%|██████▎ | 634/1000 [00:01<00:00, 402.29it/s, 255 steps of size 2.65e-02. acc. prob=0.95]sample: 68%|██████▊ | 678/1000 [00:01<00:00, 412.09it/s, 255 steps of size 2.65e-02. acc. prob=0.95]sample: 72%|███████▏ | 723/1000 [00:01<00:00, 415.83it/s, 287 steps of size 2.65e-02. acc. prob=0.95]sample: 76%|███████▋ | 765/1000 [00:01<00:00, 383.89it/s, 15 steps of size 2.65e-02. acc. prob=0.95] sample: 81%|████████ | 811/1000 [00:01<00:00, 402.33it/s, 95 steps of size 2.65e-02. acc. prob=0.95]sample: 85%|████████▌ | 852/1000 [00:01<00:00, 388.70it/s, 95 steps of size 2.65e-02. acc. prob=0.95]sample: 91%|█████████ | 910/1000 [00:02<00:00, 438.71it/s, 127 steps of size 2.65e-02. acc. prob=0.96]sample: 96%|█████████▌| 955/1000 [00:02<00:00, 409.88it/s, 255 steps of size 2.65e-02. acc. prob=0.96]sample: 100%|█████████▉| 997/1000 [00:02<00:00, 398.76it/s, 15 steps of size 2.65e-02. acc. prob=0.95] sample: 100%|██████████| 1000/1000 [00:02<00:00, 433.97it/s, 127 steps of size 2.65e-02. acc. prob=0.95]
0%| | 0/1000 [00:00<?, ?it/s]warmup: 5%|▍ | 49/1000 [00:00<00:01, 488.03it/s, 39 steps of size 1.41e-02. acc. prob=0.74]warmup: 11%|█ | 110/1000 [00:00<00:01, 554.03it/s, 111 steps of size 8.65e-02. acc. prob=0.77]warmup: 17%|█▋ | 166/1000 [00:00<00:01, 531.65it/s, 31 steps of size 4.23e-02. acc. prob=0.77] warmup: 22%|██▏ | 220/1000 [00:00<00:01, 469.94it/s, 31 steps of size 3.82e-02. acc. prob=0.78]warmup: 27%|██▋ | 270/1000 [00:00<00:01, 470.52it/s, 191 steps of size 1.21e-02. acc. prob=0.78]warmup: 32%|███▏ | 318/1000 [00:00<00:01, 424.56it/s, 239 steps of size 2.51e-02. acc. prob=0.78]warmup: 38%|███▊ | 378/1000 [00:00<00:01, 470.23it/s, 95 steps of size 3.77e-02. acc. prob=0.78] warmup: 43%|████▎ | 427/1000 [00:00<00:01, 465.21it/s, 47 steps of size 2.71e-02. acc. prob=0.78]warmup: 48%|████▊ | 475/1000 [00:01<00:01, 414.12it/s, 191 steps of size 2.49e-02. acc. prob=0.78]sample: 52%|█████▏ | 520/1000 [00:01<00:01, 421.12it/s, 199 steps of size 3.39e-02. acc. prob=0.91]sample: 56%|█████▋ | 564/1000 [00:01<00:01, 421.10it/s, 15 steps of size 3.39e-02. acc. prob=0.93] sample: 61%|██████ | 610/1000 [00:01<00:00, 430.16it/s, 95 steps of size 3.39e-02. acc. prob=0.93]sample: 65%|██████▌ | 654/1000 [00:01<00:00, 402.25it/s, 79 steps of size 3.39e-02. acc. prob=0.93]sample: 72%|███████▏ | 716/1000 [00:01<00:00, 461.58it/s, 31 steps of size 3.39e-02. acc. prob=0.93]sample: 76%|███████▋ | 764/1000 [00:01<00:00, 465.96it/s, 95 steps of size 3.39e-02. acc. prob=0.92]sample: 81%|████████ | 812/1000 [00:01<00:00, 452.43it/s, 175 steps of size 3.39e-02. acc. prob=0.93]sample: 86%|████████▌ | 861/1000 [00:01<00:00, 462.43it/s, 15 steps of size 3.39e-02. acc. prob=0.92] sample: 91%|█████████ | 908/1000 [00:02<00:00, 439.42it/s, 15 steps of size 3.39e-02. acc. prob=0.92]sample: 95%|█████████▌| 953/1000 [00:02<00:00, 438.54it/s, 31 steps of size 3.39e-02. acc. prob=0.92]sample: 100%|██████████| 1000/1000 [00:02<00:00, 453.73it/s, 15 steps of size 3.39e-02. acc. prob=0.92]
0%| | 0/1000 [00:00<?, ?it/s]warmup: 7%|▋ | 72/1000 [00:00<00:01, 678.61it/s, 255 steps of size 1.16e-02. acc. prob=0.75]warmup: 14%|█▍ | 140/1000 [00:00<00:01, 454.79it/s, 39 steps of size 7.82e-03. acc. prob=0.77]warmup: 19%|█▉ | 190/1000 [00:00<00:02, 352.63it/s, 159 steps of size 3.29e-02. acc. prob=0.77]warmup: 24%|██▎ | 236/1000 [00:00<00:02, 381.03it/s, 79 steps of size 6.74e-02. acc. prob=0.78] warmup: 28%|██▊ | 278/1000 [00:00<00:02, 344.27it/s, 15 steps of size 6.07e-02. acc. prob=0.78]warmup: 32%|███▎ | 325/1000 [00:00<00:01, 375.88it/s, 45 steps of size 2.14e-02. acc. prob=0.78]warmup: 37%|███▋ | 374/1000 [00:00<00:01, 405.79it/s, 159 steps of size 4.15e-02. acc. prob=0.78]warmup: 43%|████▎ | 427/1000 [00:01<00:01, 440.22it/s, 7 steps of size 3.09e-02. acc. prob=0.78] warmup: 47%|████▋ | 473/1000 [00:01<00:01, 396.00it/s, 15 steps of size 5.15e-02. acc. prob=0.78]sample: 52%|█████▏ | 520/1000 [00:01<00:01, 415.52it/s, 63 steps of size 3.29e-02. acc. prob=0.91]sample: 56%|█████▋ | 564/1000 [00:01<00:01, 418.76it/s, 15 steps of size 3.29e-02. acc. prob=0.92]sample: 62%|██████▏ | 623/1000 [00:01<00:00, 462.00it/s, 159 steps of size 3.29e-02. acc. prob=0.91]sample: 67%|██████▋ | 671/1000 [00:01<00:00, 425.96it/s, 15 steps of size 3.29e-02. acc. prob=0.91] sample: 72%|███████▏ | 715/1000 [00:01<00:00, 410.81it/s, 7 steps of size 3.29e-02. acc. prob=0.91] sample: 76%|███████▌ | 757/1000 [00:01<00:00, 392.43it/s, 15 steps of size 3.29e-02. acc. prob=0.91]sample: 81%|████████ | 808/1000 [00:01<00:00, 423.23it/s, 31 steps of size 3.29e-02. acc. prob=0.92]sample: 85%|████████▌ | 852/1000 [00:02<00:00, 409.48it/s, 95 steps of size 3.29e-02. acc. prob=0.92]sample: 90%|████████▉ | 897/1000 [00:02<00:00, 416.68it/s, 143 steps of size 3.29e-02. acc. prob=0.92]sample: 94%|█████████▍| 944/1000 [00:02<00:00, 430.65it/s, 255 steps of size 3.29e-02. acc. prob=0.91]sample: 99%|█████████▉| 988/1000 [00:02<00:00, 406.61it/s, 111 steps of size 3.29e-02. acc. prob=0.91]sample: 100%|██████████| 1000/1000 [00:02<00:00, 412.09it/s, 31 steps of size 3.29e-02. acc. prob=0.91]